

Initial Civil Risk Engineering Survey : Las Lajas, Aucayes & Alfalfal II Underground & Civil Works

Davorin KOLIĆ, PhD, PE, CE Project Manager Design Co.630/620A

AES GENER Corporate Offices Rosario Norte 532 Las Condes Santiago, Chile

August 18, 2014

Contents

Contents :

- 1. Introduction
- 2. Civil Design

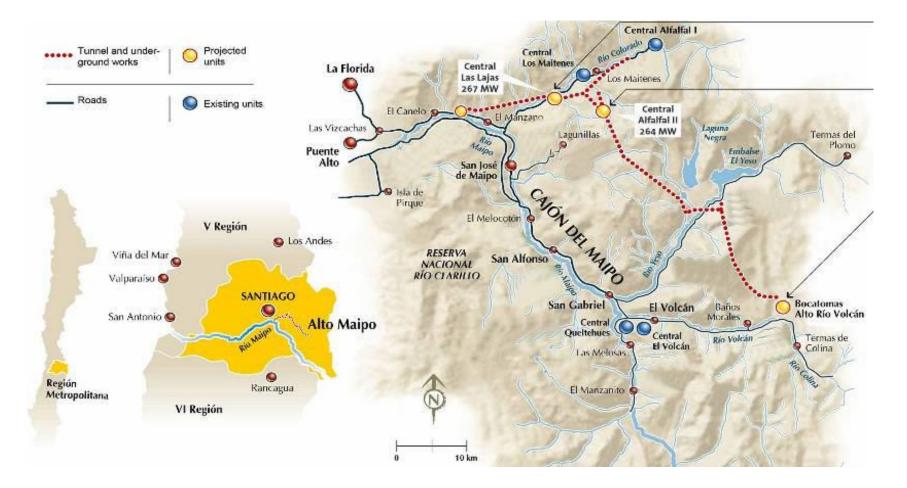
- 3. Design Risk Management
- 4. Underground Construction
- 5. Surface Construction
- 6. Conclusion

Highlights

overall about the project

design scope/status, site investigatns anticipated ground & groundwater conditions, GBR, basis for rock mass properties, seismic loadings, role of designer

risk mngmt procd., design risk registers


tunnel design, cavern design, TBM specs, monitoring

slope stability, hydrology drainage & flood risk assessment

Introduction

Hydroelectric Project Alto Maipo Co.630/620A + 620B/610

Hydroelectric Project Alto Maipo Co.630/620A + 620B/610

Underground structures :		Surface structures :
D&B tunnels (4x4 – 8x8 m)	22.543 m	Muck Deposits :
TBM tunnels (dia.3.4, 4.5, 6.9m)	22.362 m	MD5, 6, 7, 8, 9, 11, 12, 13, 14
Caverns (D&B)		Portals :
C-620 Alfalfall II	34.230 m ³	VA1, VA2, VL7, VL8, VL5, VL4, L1
C-630 Las Lajas	41.400 m ³	
· · · · · · · · · · · · · · · · · · ·		Forebay + Inlet Maitenes
Raiseboring (2.0-5.0 m)	19.523 m ³	Forebay Alfalfal II
(for vert.pressure and surge shaft of La	as Lajas)	Outlet L1
TUNEL/TUNNEL LAS LAJAS CUADRO DE UNION		
TUNEL DE ADUCCION HEADRACE TUNNEL		Access roads to portal areas
TUNEL DE DESCARGA		•
	A 🔤	Construction time : 4,5 years
HEADRACE TUNNEL POWERHOUSE LAS LAJAS		-
TUNEL DE DESCARGA		
ACCESO/ACCESS ALFALFAL		3
TUNEL DE ACCESO ADIT ACCESS TUNNEL		

Civil Design : Design Scope

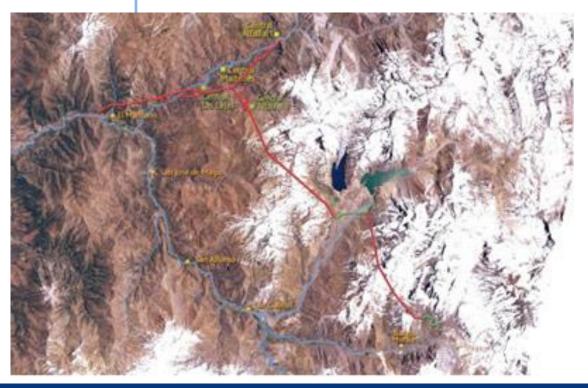
Location of MD and Portals

Civil Design : Design Scope

Main structural parts

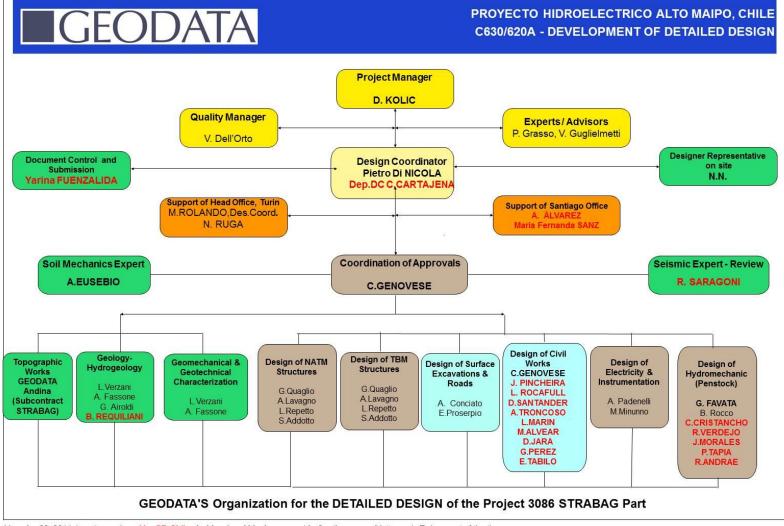
Permanent works

Tunnels TBM and D&B Shafts Caverns


46,5 km

Muck Deposits Inlets, Forebay, Outlet

Access roads (some) Electric lines


Temporary works

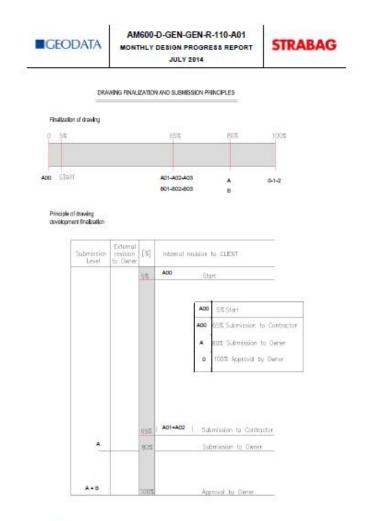
Access roads (some) Portals (partly)

Civil Design : Design Status

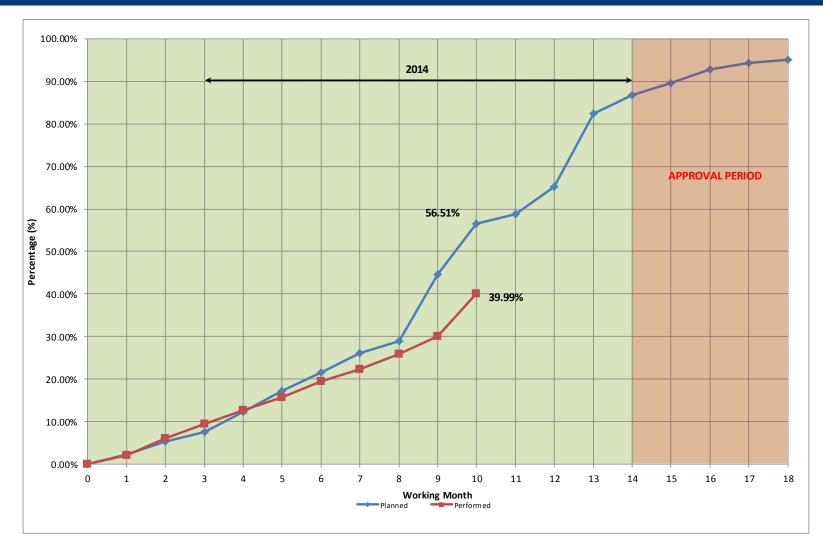
Ver.: Apr.22, 2014, in red : employed by GD Chile, bold red and black : present in Santiago , small letters :: in Torino most of the time

Civil Design : Design Status

Design Performance :


Planned time	: 16 mo, Sep13/Dec14
Performed time	: 11 mo
Percentage	: 68,75 % time used
Total dwgs	: 1075
Delivered	: 725

Percentage : 67,44 %


 Planned perform.
 : 56,51 %

 Performed
 : 39,99 %

No.dwgs approved: 27 Perc.of delivered : 3,72 %

Civil Design : Design Status

Performance curves : planned and performed, status as of : July 31, 2014

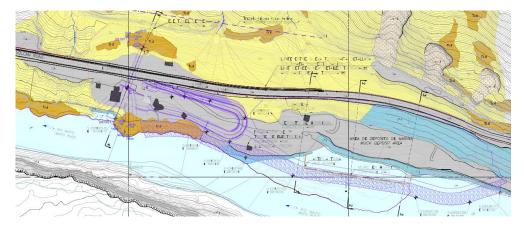
Las Lajas Sector	Location	Scheduled explorations	Performed explorations	OE's Recommendation (additional investigations)	Remark
ι1	Portal Area	– Horizontal drilling without core recovery	 Attenberg limits Modified Proctor 5 inclined drillings with core recovery in rock formation: 	It's recomended that all investigation drill holes should be drilled incline downwards since the tunnel alignment is much lower than the area where it's possible to drill from.	+
	Portal Area	 - 30 degree drilling without core recovery 	see above		+
		2 pits 2 samples per pit (at 2 m depth and at the bottom of the pit)	– Granulometry – Attenberg limits	 additional pit in the midle of the Muck Deposit Granulometry, Atterberg Limits, Proctor Test, Shear Test 	+

Site Investigations

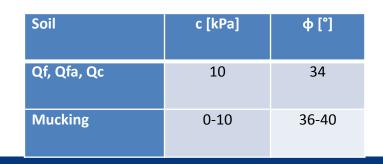
Las Lajas Sector	Location	Scheduled explorations	Performed explorations	OE's Recommendation (additional investigations)	Remarks
	Portal Area		– Granulometry – Attenberg limits – Modified Proctor – Triaxial		+
VL4	Portal VL4		 1st drilling campaign: 3 holes without core recovery (46,5 m) 2nd drilling campaign: 7 holes without core recovery (117,32 m) 3rd drilling campaign: 6 holes without core recovery (81,4 m) 4th drilling campaign: 6 holes with core recovery (in progress) 	campaign 2 to 4 was instructed by the Owner	In work
		3 pits 2 samples per pit (at 2 m depth and at the bottom of the pit)	– Granulometry – Attenberg limits – Modified Proctor		+
		2 pits 2 samples per pit (at 2 m depth and at the bottom of the pit)	– Granulometry – Attenberg limits – Modified Proctor – Nuclear densitometer		+

Las Lajas Sector	Location	Scheduled explorations	Performed explorations	OE's Recommendation (additional investigations)	Remarks
	Muck Deposit 10	2 samples per pit (at 2 m depth and at the bottom of the pit)	– Granulometry – Attenberg limits – Modified Proctor		open
VL5	Portal Area		– Granulometry – Attenberg limits – Modified Proctor – Triaxial		open
	Portal VL5	2 vertical drillings with core recovery over tunnel axis at each side of the road. (if vertical drillings are not possilble, 3 horizontal drillings along tunnel axis without core recovery, once acces road is built)		Horizontal and incline drilling from the tunnel portal is recommended .	open
VL 7	Muck Deposit 7	not ready now		 Granulometry Attenberg limits Modified Proctor 2 samples per pit (2m, at bottom) 	open
	Portal VL7			No investigation required	+

Las Lajas Sector	Location	Scheduled explorations	Performed explorations	OE's Recommendation (additional investigations)	Remarks
N# 0	Portal VL8			No investigation required	+
VL 8	Muck Deposit 8		– Nuclear densitometer		+
	Forebay	3 Exploratory drillings with core recovery and SPT every 3m, Lefranc every 5m			ln work
Maitenes	Forebay	6 pits	– Granulometry – Attenberg limits – Modified Proctor		+
Main workshop	Muck Deposit 11			 2 pits If is not rock Granulometry Attenberg limits Modified Proctor Sheartest 2 samples per pit (2m, at bottom) 	open
Camp Aucayes	Camp Aucayes Bajo		– Granulometry – Attenberg limits – Modified Proctor		+
Bajo	Camp Aucayes Bajo		 Nuclear densitometer 		+


ALFALFAL II Sector

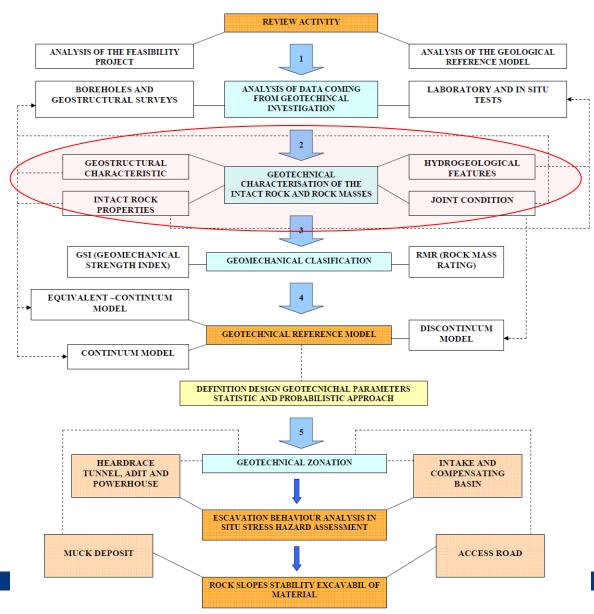
Alfalfal II	Location	Scheduled explorations	Performed explorations	OE's Recommendation (additional investigations)	Remarks
	Portal Area			no requirements	+
VA1	Portal VA1	(Slope protection required)		no requirements	+
Muck Deposit 9	Muck Deposit 9	(Keep safety distance to existing slope crest	-	– existing muck deposit	+
VA1 - VA2	VA1 - VA2 Road	(Currently no inspections possible except manual digging) – 4 pits (as agreed on joint site visit on 22nd of July)	 geophysical investigations manual digging of 5 exploratory pits and taking samples at a depth of 	As constructed, if necessary – Granulometry – Attenberg limits – Modified Proctor – Triaxial/shear test if possible	+
VAI - VAZ	First road stretch		– Granulometry – Attenberg limits – Modified Proctor – Triaxial – Nuclear densitometer		+


GEODATA Antic.Ground & GrWater Conditions

EXAMPLE ON MD12

- Geological setting :
- 1. Basis is the "Basic geological reference model" + on-site geological survey
- 2. Geotechnical verification
- Estimated geotechnical parameters
- Verification using method of limit equilibrium
- Ground water levels estimated and included in design on safe side (no detailed basic data available)

GEODATA Civil Design : Ground Ref.Conditions



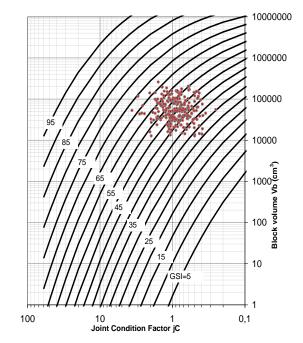
GEOTECHNICAL BASELINE REPORT

- Borings and samples taken form the site for laboratory investigations
- Report oin work for different sites
- So far work based on onaticipated ground conditions
- Samples and borings at L1 portal

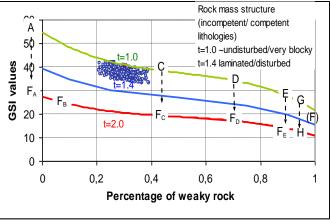
Civil Design : Rock Mass Properties

FLOWCHART FOR THE GEOTECHNICAL AND GEOMECHANICAL STUDY

ROCK MASS CHARACTERIZATION Based on :


- Boreholes
- Geophysiscs surveys
- Laboratory and in situ tests

Geological surveys in period Sep.2013-Feb.2014


GEODATA Civil Design : Rock Mass Properties

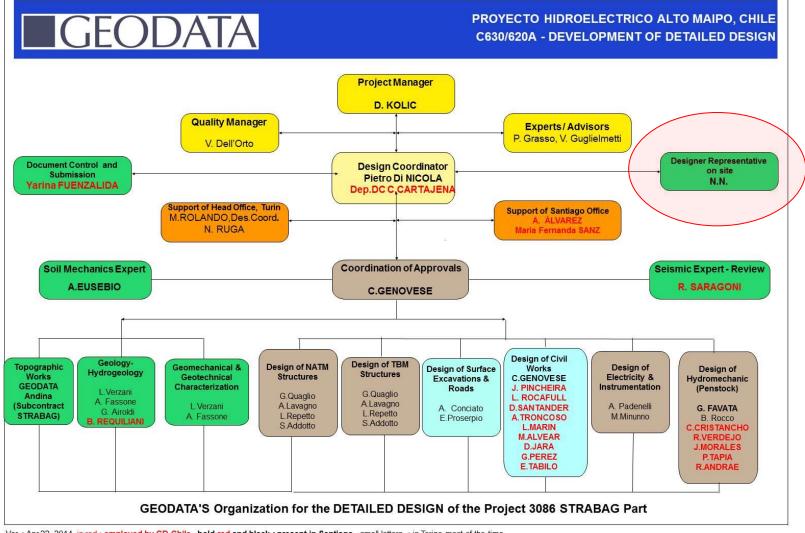
Example of GSI estimation using quant.probabilistic approach using structural survey results (Russo 2007,2009)

Example of GSI probab. GSI estimation by using Hoek-Marinos chart for heterogenous rock masses.

Principles described in "Design Manual".

SEISMIC DESIGN of SURFACE STRUCTURES

Based on international practice and local guidelines and conditions application of seismic loading on surface structures :

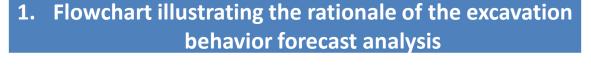

Suggested improval of approach with reduced seismic loading bei SeiExp :

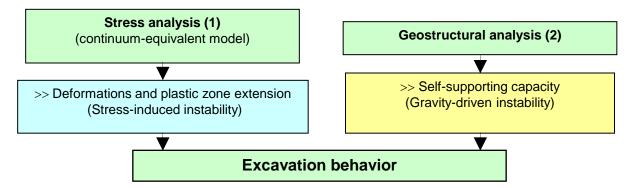
- 1. Surface structures (inlets, outlets RC, portals)
- * Seismic coefficient Kh = 0.18 and Kv= 0.12

2. Earthworks and Muck Deposits MD

* Seismic coefficient Kh = 0.18 only

GEODATA Civil Design : Role of Designer on Site

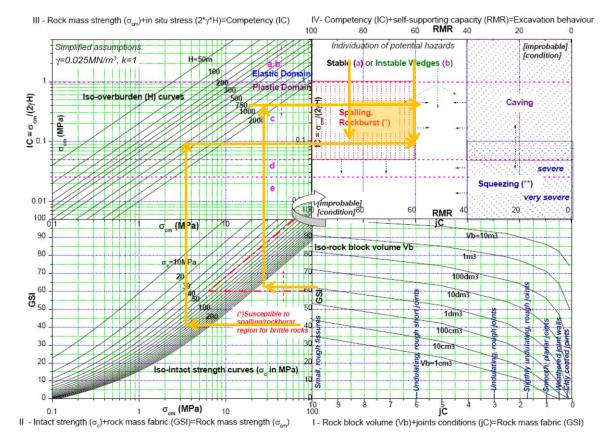



Ver.: Apr.22, 2014, in red : employed by GD Chile, bold red and black : present in Santiago , small letters : in Torino most of the time

GEODATA DRM : Risk Management Procedures

EXAMPLE of LAS LAJAS CAVERN

Flowchart of the excavation behaviour forecast analysis.


	1. General scheme of the excavation behavior							
					Rock mass			
	\downarrow Analysis	\downarrow Analysis $ ightarrow$		structural $ ightarrow$	Continuous \leftrightarrow Discontinuous \leftrightarrow Equivalent C.			uivalent C.
		Tensiona	↓		T III	RM	R	
av behaviour.	Deformational response↓	δ ₀ (%)	R _{pl,max} / R ₀	Behavioral category \downarrow	Ý I	 	IV	V
				а	STABLE			†
	Elastic (σ _θ <σ _{cm})	negligible	-	b	INSTABLE WEDGES			CAŲ́ING ↓
		<0.5	1-2	С	SPALLING/ ROCKBURST			
	Elastic - Plastic	0.5-1.0	2-4	d				
	($\sigma_{\theta} \ge \sigma_{cm}$)	>1.0	>4	e				SQUEEZING
				(f)		\rightarrow Immedia	ate collapse	of tunnel face \uparrow

Scheme of excav behaviour.

GEODATA DRM : Risk Management Procedures

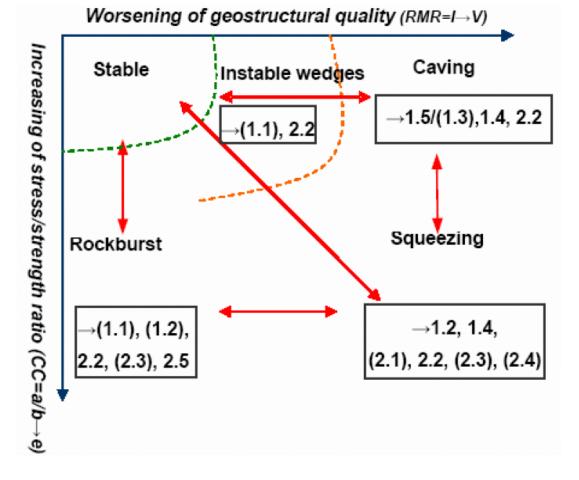
LAS LAJAS CAVERN

Simplified approach for the preliminary assessment of the excavation behaviour in rock tunnelling by Russo (2008,2014)

21 15

DRM : Design Risk Registers

LAS LAJAS Powerhouse


application criteria for the support types

1. Application criteria of the support types					
Prevalent Hazard	Geomechanical classification				
	BC	RMR		Туре	
Local wedge	"a"	I	Stable rock mass, with only possibility of local rock block fall; rock mass of very good quality with elastic response upon excavation	-	
Wedge instability	"b"	н	Rock wedge instability; rock mass of good quality with elastic response upon excavation		
Rockfall	"a/b" - "c"	IIIa	Pronounced tendency to rockfall; rock mass of fair quality, with possible occurrence of a moderate development of plastic zone	Cavern	
	″c″	н	Mild brittle failure, even associated to minor rock block ejection; overstressed hard, good rock mass (→Minor spalling/rockburst)		
Spalling/ Rockburst	"c"	1-11	Sudden brittle failure, even associated to moderate rock block ejection; overstressed hard, good rock mass (→Moderate spalling/rockburst).	-	
	"c"	1-11	Sudden and violent brittle failure, even associated to rock block ejection; highly overstressed hard, good rock mass (→Severe spalling/ heavy rockburst)	-	

GEODATA DRM : Principal Loss Scenarios

LAS LAJAS Powerhouse

Mitigation measures
 linked to excavation
 behaviour
 (Russo, Grasso, 2006-2007).

DRM : Principal Loss Scenarios

LAS LAJAS Powerhouse

 Mitigation measures linked to excavation behaviour

	1. Mitigation measures linked to excavation behavior							
#	Design Action	Example of Stabilization Measures						
(1) In Advancing the Excavation								
(1.1)	Pre-confinement of instable wedges	Inclined bolts, forepoling,						
(1.2) Rock mass reinforcement		Fully grouted rockbolts and dowels,						
(1.5)		Sub-horizontal pressure grouting or jet- grouting canopy						
(1.4)	Supporting the tunnel face	Shotcrete, steel bars, injected fibreglass elements,						
(1.5) Forward reinforcement of poor ground		Umbrella arch						
(2) During Excava	ation							
(2.1)	Allow for convergence	Over-excavation						
(2.2)	Provision of a excavation support pressure	Support system differently composed by steel ribs, lattice girder, shotcrete with steel wire mesh, bolts,						
(2.3)	Rock mass reinforcement	Fully grouted rockbolts and dowels						
(2.4)	Controlled de-confinement to allow high convergences	Sliding steel-ribs, shotcrete with joints and/or deformable elements,						
(2.5)	Protection against rockfalls and spalling	Rock bolt and/or shotcrete, wire mesh,						

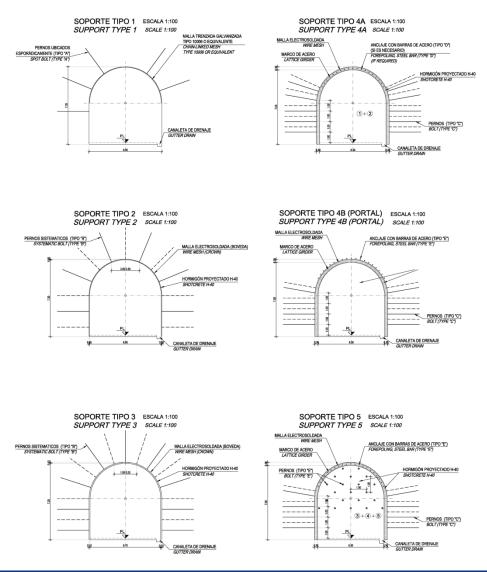
GEODATA DRM : Design Check and Appr. Proc.

DETAILED DESIGN as PART OF DESIGN and BUILD PROCEDURE

- Involvement of Soil Mechanic And Seismic Design Experts in Design Procedure
- Parallel analyses by different empirical and numerical methods
- Development of design and construction risk scenarios separately for each part of the project and each structural part.
- Approval in compliance with checkers in headquarter office (based on analyses and experience.

Underground Construction

TUNNELS (Conventional+TBM) and CAVERNS

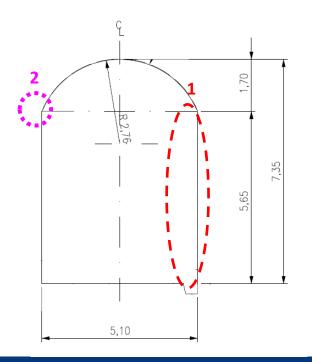

• Dimensioning and structural verification for each support type

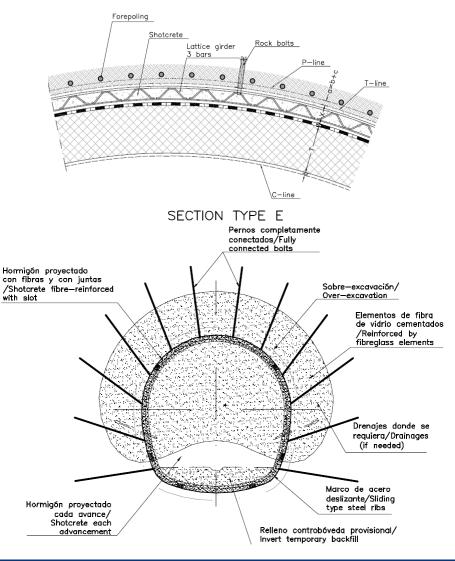
	Support type		Analysis methods		
NATM	BASIC (GDE)		Primary support / Outer and Inner support (without cast in concrete)	Secondary support / Inner support (cast in concrete)	
I	1-2 (A-B) 3 (C1)		Empirical method (Grimstad & Barton) Limit equilibrium method (Unwedge analysis or analytical formulations)		
II			Convergence-Confinement method		
11-111	4 (C2)	4 (C3)	Convergence-Confinement method + Numerical method (FEM analysis)	Numerical method	
I-II	3 (C4)	3' (C5)	Hybrid empirical/numerical method (FEM analysis)	(FEM-BBM analysis)	
III-IV	5 (D)		Numerical method (FEM analysis)		
V	5' (E)		Numerical method (FEM analysis)		
VI	5" ((F)	Numerical method (FEM-BBM analysis)		

UC : Tunnel Design

CONVENTIONAL TUNNELLING

- foreseen generally 5 class types
- Class 1 : spot bolts
- Class 2 : systematic bolts + wire mesh + shotcrete (SFRC)
- Class 3 : systematic bolts + wire mesh + shotcrete 2 layers (SFRC)
- Class 4a-b: systematic bolts + wire mesh + shotcrete 2 layers (SFRC) + lattice girders+ forepoling
- Class 5 : systematic bolts + wire mesh + shotcrete 2 layers (SFRC) + lattice girders+ forepoling + face anchors

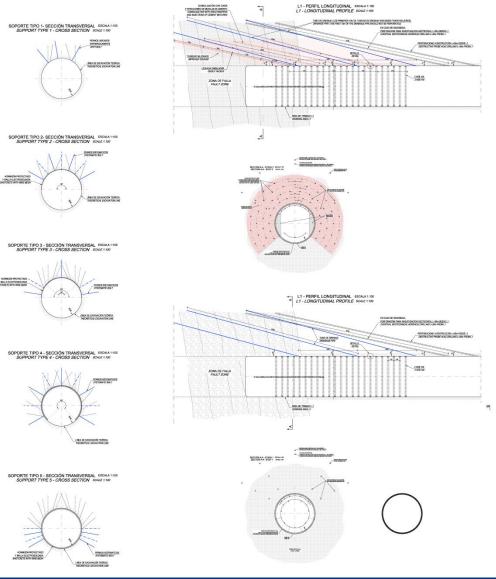

UC : Tunnel Design


CONVENTIONAL TUNNELLING

Verification + improvements

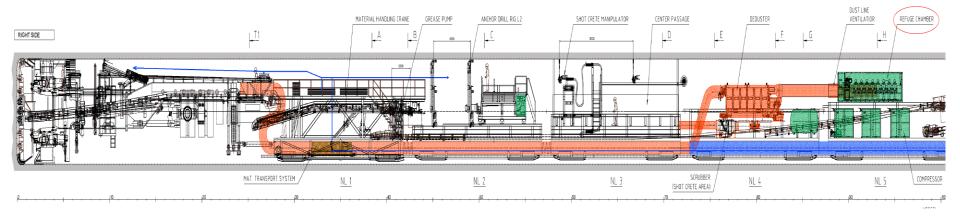
- vertical side walls and sharp edges : shape improves stress redistribution and concentrations
- theoretical excavation line definition

(no convergencies foreseen)



UC : Tunnel Design

TBM Tunnelling


- foreseen generally 5 class types:
- Class 1 : spot bolts + systematic bolting + wire mesh+ SpB 50 mm
- Class 2 : spot bolts + systematic bolting + wire mesh+ SpB100mm
- Class 3 : systematic bolting + wire mesh + SpB150mm + steel ribs UPN140
- Class 4 : systematic bolting + wire mesh– full ring+ SpB100mm + steel ribs UPN160
- Class 5 : systematic bolting + wiremesh-full ring + SpB100mm full ring + arches TH25/28 full ring
- If required : probe drillings + drainage pipes (35m)+consol. with grout pipes

UC : TBM Specifications

TBM Tunnelling

- 6.90 m excavation diameter, open shield gripper TBM
- Herreknecht machine for 10.0 km of 12.9 km of Las Lajas tailrace tunnel starting from L1 upwards

 Another TBM tunnel of 4.53 m diameter open type expected for about 9.5 km of 14.5 km of Afalfal II tunnel, starting form downstream upwards

UC : TBM Specifications

TBM Tunnelling

STRUCTURE AND MATERIAL	
Shield Type	Open type gripper TBM, new
GRIPPER SHIELD	
Nominal Diameter	6.900 mm
ROOF SHIELD	
Dimensions (bore x rod x stroke)	240mm x 200mm x 250mm
Nominal force	7.238 kN @400 bar
SIDE SHIELD	
Nom. Working range	+110mm/-120mm of nom. Bore diameter
Dimensions (bore x rod x stroke)	320mm x 220mm x 800mm
Nominal force	6.434 kN@400 bar
Nominal force (pull force)	1.206 kN
WORKING PLATFORMS	
Main beam	Ring beam platforms
Main beam	Roof drill platforms

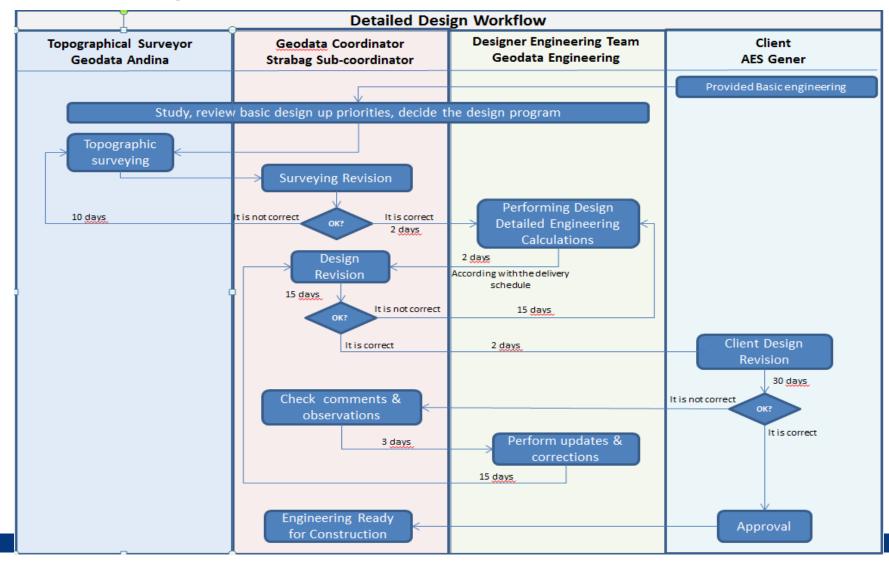
UC : TBM Specifications

GEODATA

TBM Tunnelling

HYDRAULIC SYSTEM	
Power installed	110 kW
System operating pressure	350 bar
Max. System pressure	400 bar
Reservoir capacity	~3.500 lt
Filtration system	Continuous loop filter system
OPERATORS CABIN	
PLC system	SIEMENS PLC control system of all TBM
	functions from operators cab
TBM guidance system	TUnIS navigation gripper & TUnIS navigation
	office
COMUNICATION	
Communication phones on TBM/BU	5pcs
	- 1
GAS MONITORING EQUIPMENT	
Sensors and monitoring equipment	1 set, sensor set consists of: methane, 3 pcs;
	carbon monoxide, 1 pcs; nitrogen monoxide, 1
	pcs; hydrogen sulfide, 1pcs
	pcs, nyurogen sumue, ipcs

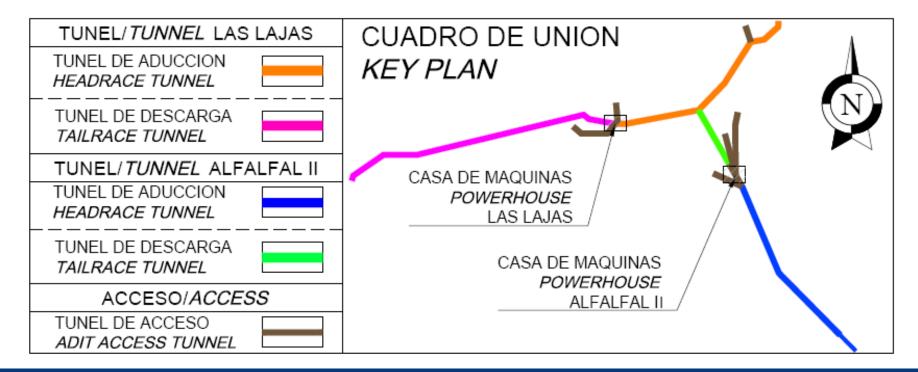
UC : TBM Specifications


GEODATA

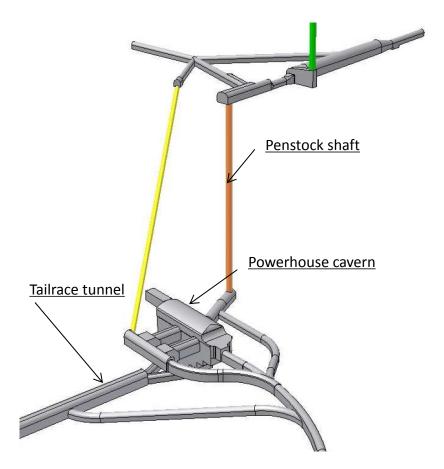
TBM Tunnelling

rain size	Max. 300mm x 300 mm x 500 mm
Belt width	800 mm
Transport capacity	800 to/hr
Belt speed	0 – 2.5 m/s, VFD controlled
Belt type	EP 630/4, 10+4mm, UTS class A
Misting system	1 pcs @transfer point to BU conveyor
Metal detector	1 pcs

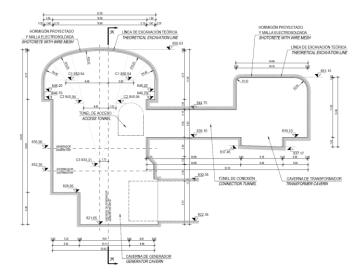
UC : TBM Specifications

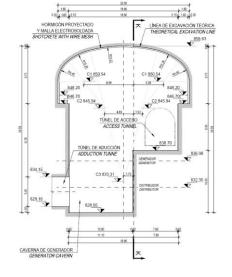

TBM Tunnelling

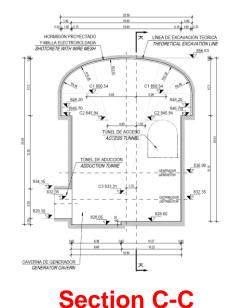
UC : Cavern Design


LAS LAJAS Powerhouse

- 2 powerhouses with Las Lajas and Alfalfal II with 267+264 MW capacity
- Las Lajas powerhouse in Colorado river valley, downstream 3 km
- Headrace tunnel collects water of Alfalfall I ,Alfalfall II, Maitenes plants toward Las Lajas, 65 m³/sec, 483 m height = 267 MW

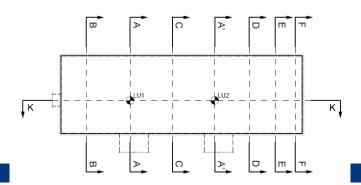

UC : Cavern Design


- located with about 500 m overburden, left side of the Colorado River
- with tailrace tunnel stretching downwards
- Geological Setting
- Rock masses of Abanico occidental Formation, Unit A
- rock masses at the depth of the Las Lajas PH foreseen stratified,
- With strata thicknesses from some tens of centimeters to some meters
- Expected : medium-high quality rock mass ,RMR II-IIIa



UC : Cavern Design

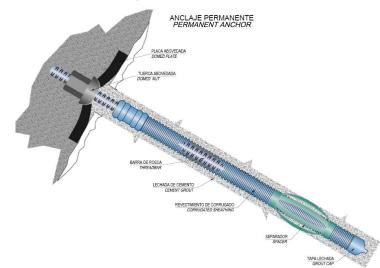
LAS LAJAS Powerhouse – Typical Cross Sections



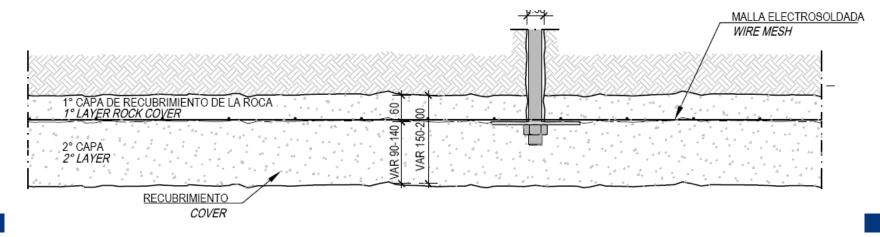
Section A-A

UC : Cavern Design

LAS LAJAS Powerhouse

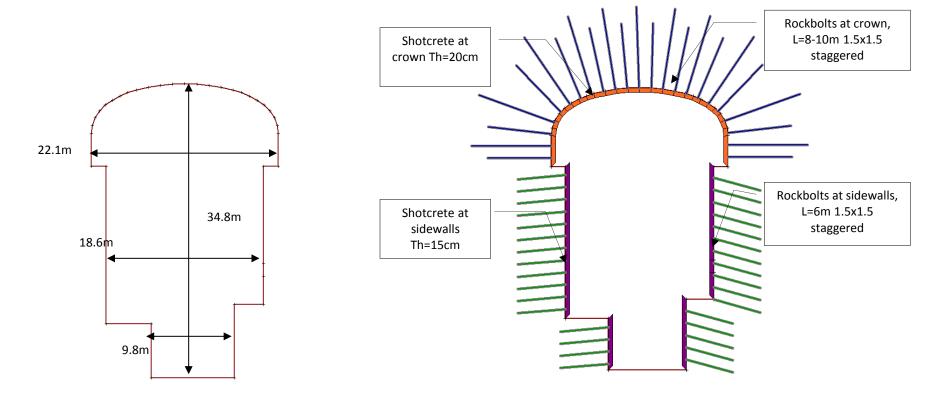

application criteria for the support types

1. Application criteria of the support types					
	Prevalent Hazard	valent Hazard classifi		Excavation behavior	Support Type
		BC	RMR		
	Local wedge	"a"	I	Stable rock mass, with only possibility of local rock block fall; rock mass of very good quality with elastic response upon excavation	-
	Wedge instability	"b"	0	Rock wedge instability; rock mass of good quality with elastic response upon excavation	
	Rockfall	"a/b" - "c"	IIIa	Pronounced tendency to rockfall; rock mass of fair quality, with possible occurrence of a moderate development of plastic zone	Cavern
		"c"	н	Mild brittle failure, even associated to minor rock block ejection; overstressed hard, good rock mass (→Minor spalling/rockburst)	
	Spalling/ Rockburst	"c"	I-11	Sudden brittle failure, even associated to moderate rock block ejection; overstressed hard, good rock mass (→Moderate spalling/rockburst).	-
		"c"	1-11	Sudden and violent brittle failure, even associated to rock block ejection; highly overstressed hard, good rock mass (→Severe spalling/ heavy rockburst)	-


UC : Cavern Design

LAS LAJAS Powerhouse

• Support type for the cavern

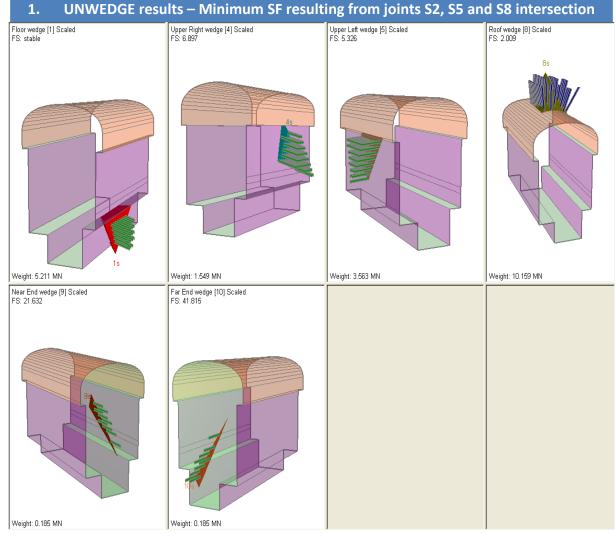

	1. Support type of the cavern				
#	Stabilization Measures	Note			
-	Radial drainages, L=12m, pattern 6.0x 6.0m	(*)			
2.2	Shotcrete H-40 with steel wire mesh, Th=200mm at crown and Th=150mm at sidewalls	Wire mesh ACMA C-188 150x150 F6mm			
2.2	Systematic rockbolt pattern 1.5x 1.5m staggered, L=8-10m at crown and L=6m(min)- 9m(max) at sidewalls	-Suggested DCP bolt for Powerhouse cavern			

UC : Monitoring

LAS LAJAS Powerhouse

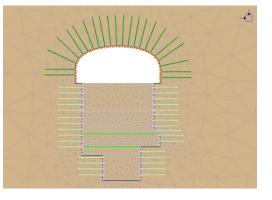
Rock Support Measures

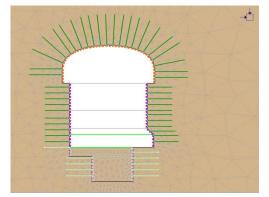
UC : Cavern Design

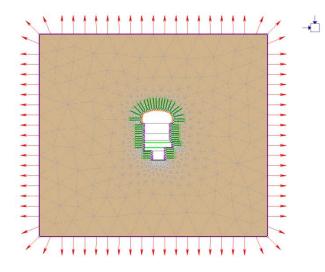

LAS LAJAS Powerhouse

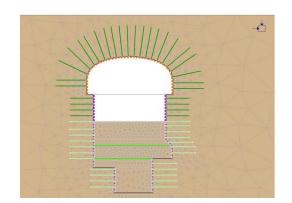
 Mitigation measures linked to excavation behaviour

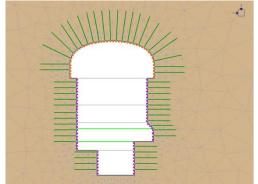
	1. Mitigation measures linked to excavation behavior			
#	Design Action	Example of Stabilization Measures		
(1) In Advanci) In Advancing the Excavation			
(1.1)	Pre-confinement of instable wedges	Inclined bolts, forepoling,		
(1.2)	Rock mass reinforcement	Fully grouted rockbolts and dowels,		
(1.3)	Forward stabilization of poor ground	Sub-horizontal pressure grouting or jet- grouting canopy		
(1.4)	Supporting the tunnel face	Shotcrete, steel bars, injected fibreglass elements,		
(1.5)	Forward reinforcement of poor ground	Umbrella arch		
(2) During Exc	During Excavation			
(2.1)	Allow for convergence	Over-excavation		
(2.2)	Provision of a excavation support pressure	Support system differently composed by steel ribs, lattice girder, shotcrete with steel wire mesh, bolts,		
(2.3)	Rock mass reinforcement	Fully grouted rockbolts and dowels		
(2.4)	Controlled de-confinement to allow high convergences	Sliding steel-ribs, shotcrete with joints and/or deformable elements,		
(2.5)	Protection against rockfalls and spalling	Rock bolt and/or shotcrete, wire mesh,		

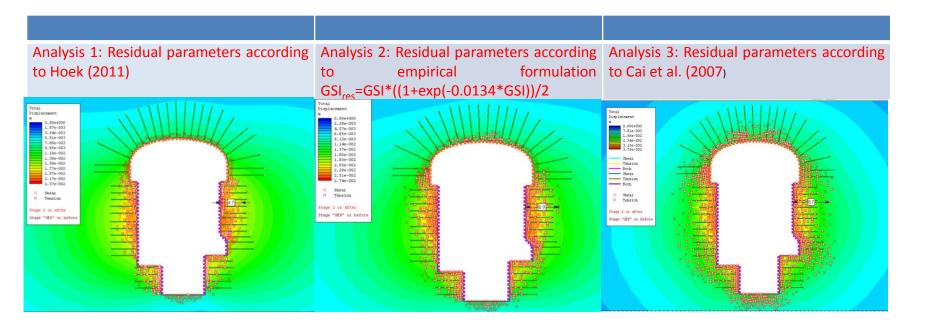

UC : Monitoring


- Support verification
- wedge analysis

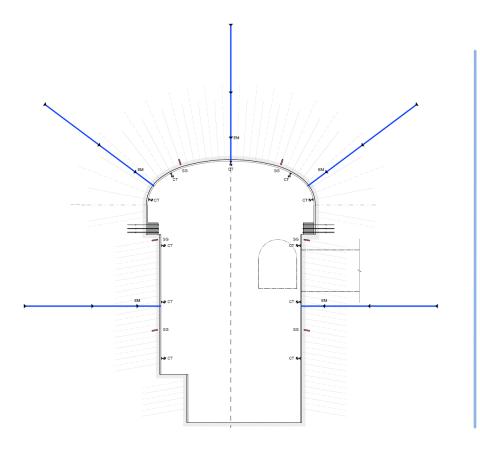


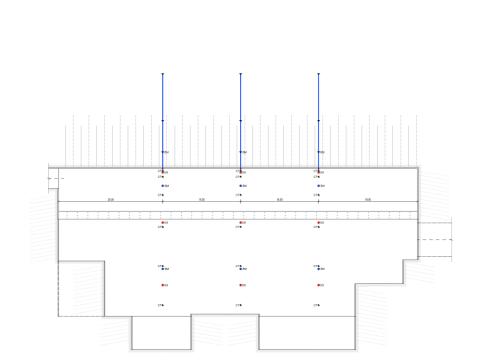

UC : Monitoring


- Support verification
- Numerical model for FEM analysis and sequential excavation analysis in 4 steps



UC : Monitoring


- Support verification
- Comparison of numerical FEM analyses



UC : Monitoring

LAS LAJAS Powerhouse

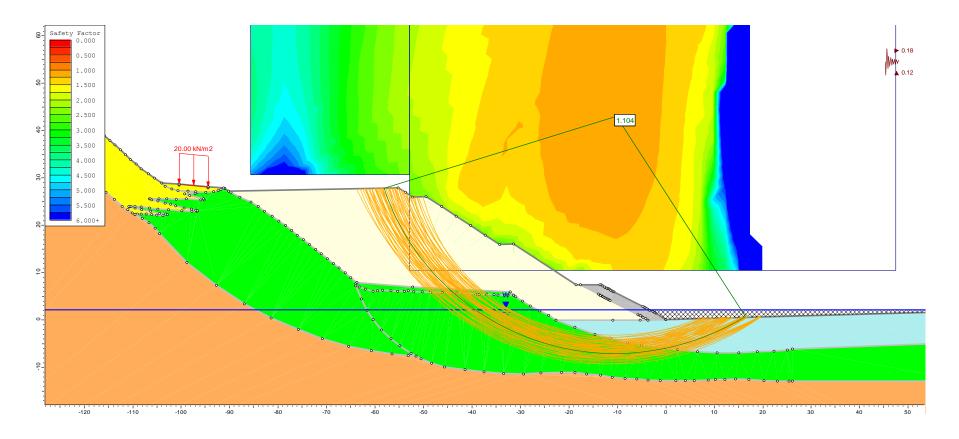
• Typical cavern monitoring sections including extensometers, strain gauges and optical targets

SC : Monitoring

LAS LAJAS Powerhouse

Monitoring vs.action plan

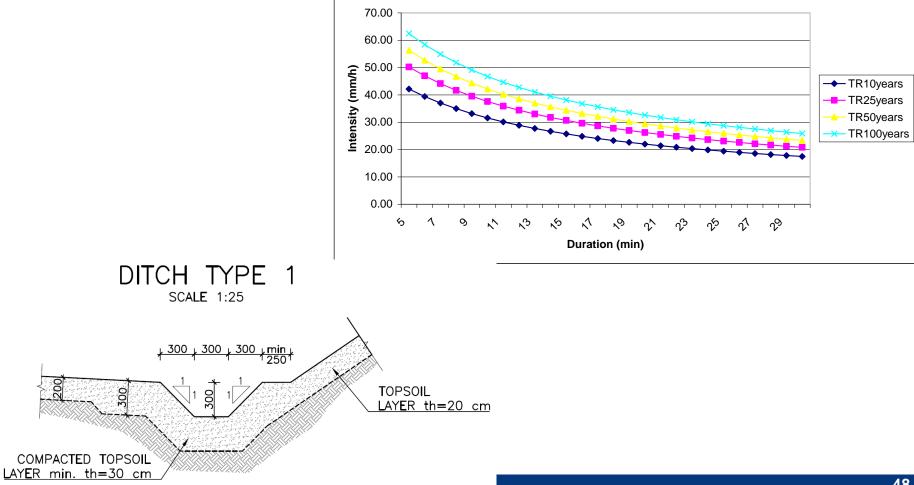
1. Monitoring instruments				
	Monitoring instruments	Monitoring Section Type		
	(CT) antical Targets for	Total of 3 stations		
	(CT) optical Targets for Convergence measurements	11		
	(EM) Multiple boreholes Extensometer	5		
	(SG) Strain Gauges on rockbolts	6		


1. Outline Monitoring Schedule		
	Frequency of Reading	
	Daily	Weekly
	Weeks 1-10	Weeks 11 onward

1. Action Plans				
LEVEL	OBSERVATION THRESHOLD	IMMEDIATE ACTIONS	CONSEQUENTIAL ACTIONS	
Level 1. Awareness Level	80% of design convergence (25mm)	Inform Designer Increase frequency of readings to 1 per day Assess whether additional readings or more instrumentation is required	The rate of displacement shall be observed and actions taken accordingly	
Level 2. Alert Level	100% of design convergence (30mm)	Inform Designer Increase frequency of readings Compile information on construction to ascertain likely causal conditions. Install additional support if required	Following investigation specific counter measures are to be devised	
Level 3. Alarm level	120% of design convergence (35mm)	Construction work is to be stopped and any temporary excavation secured. Countermeasures are to be executed	Additional instrumentation is to be installed if required to monitor the performance of the countermeasures. Construction work is only to recommence only once the effects of the countermeasures have been realized	

GEODATA Surface Construction : Slope Stability

MUCK DEPOSIT 12


 Section 3-3 of MD 12 : Stability slope analysis –seiismic up conditions SF = 1,104

GEODATA SC : Hydrology , draiage, flood RA

MUCK DEPOSIT 12

Rain fall intensity and design corresponding to it

MUCK DEPOSIT 12

"…

- The monitoring system shall face the following topics:
- assessing the efficacy of the design technical choices and solutions with reference to the variability of the geological and geotechnical conditions and parameters.
- assessing the possible deformations and ground displacements within the geotechnical influence zone;
- comparing the design calculation and the detected behaviour of geotechnical units.
- For controlling the stability of the deposit either in the construction and operational phase the following monitoring instruments are recommended:
- optical targets (OT)
- 1 inclinometer tube (IN)

View from Aucayes camp August 15, 2014

Thank you for your attention

buena suerte

50